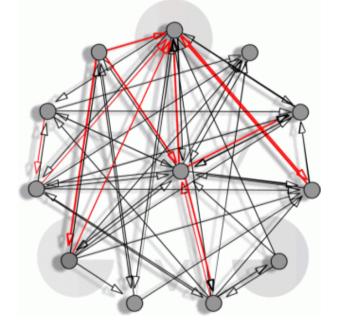
RFID in Metallic Environment

A Technological Gap to be closed

Dipl.-Ing. Josef Bernhard Dipl.-Ing. Thomas Leipold Dr.rer.pol. Dipl.-Ing. Alexander Pflaum Dipl.-Ing. Rainer Wansch


Fraunhofer Institut für Integrierte Schaltungen IIS Am Wolfsmantel 33, Erlangen

Duisburg, 13. Juni 2007

Overview

- Tags on Metal Surface
 - Requirements from a MRO perspective
 - How to deal with the problem of metal surface
 - An UHF-Tag solution
- Tags inside Metal objects
 - Challenges and Approaches
 - A HF-Tag solution

- Global organizational structure within the MRO network with many partners and service providers.
- Complex logistic network with many different service providers for bulk & break, storage and transport.
- Complex flows of spares within the whole network during life cycle.
- Sometimes even higher complexity of processes due to hierarchical structure of spare parts.
- Complex structure of worldwide information system which supports the life cycle processes.
- Extremely high requirements for RFID-based MRO information systems (especially the tag).

MRO in the Aviation Industry as an Example – Requirements concerning the finished Tag

Source: LHT

- Passive tag with reading range of more than 1,5 m on metal surfaces under operation conditions.
- Resistance against chemical substances used during operation, repair and overhaul processes.
- Resistance against mechanical shock, non-flammability (DO 160 requirements) and 20 years life cycle.
- Temperature range between -60° and +150° (due to operation conditions and MRO-processes).
- Small dimensions due to different types of items to be tagged, flexibility if possible (rounded surfaces).
- Standard compatibility (ISO18000-6C, ATA Spec 2000)
 with high memory capacity (280 Bit up to 64 kBit)

Results of a comparison between Requirements and existing Products: Technological Gaps and Challenges

- Actually there is no existing tag product which meets all requirements, but:
 - Resistance against chemical substances and DO 160 requirements are not really a problem.
 - Even temperature range and life cycle are not critical from a technological point of view.
 - Chips with the necessary storage compatibility will be available before end of 2007
- Preconditions for construction of a tag which meets requirements will be given on short term
- Challenge: Small dimensions combined with metal surfaces, long read range (and high storage microchips) are the real problem.

The Problem:

- At LF and HF (< 13,56 MHz) the inductive coupled antenna system causes eddy currents in the metal surface reducing the coupling factor
- At UHF and Microwave Frequencies the metal surface detunes the antenna

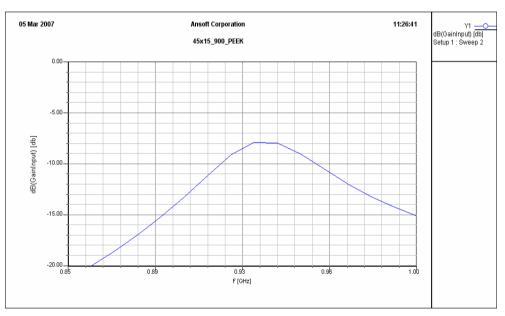
Possible solutions:

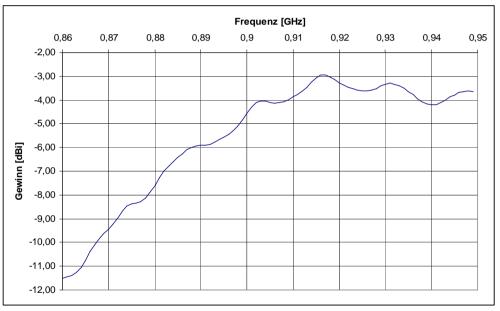
- Keeping a certain distance between tag and metal surrounding (Filling the gap with special material can reduce the necessary distance)
- Taking the metal surface into account when designing the antenna (UHF)

Figure: LIQUALLOY™ Magnetic sheets (ALPS)

Figure: UHF Tag with Emerson&Cuming absorbing material

- New Materials with nanostructures, which are placed between RFID Tag and the metal surface can improve the tag performance
- Foils for different frequencies are already offered from different manufactures like ALPS and Emerson & Cuming
- The thickness of the foils is between 0,1 mm and 3 mm
- 50-60% of the normal read range of the tag can be reached


Integrierte Schaltungen



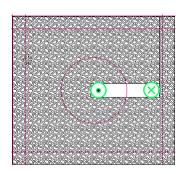
The Design Goals:

- Smallest size possible with acceptable read range
- High bandwidth from 860-960 MHz for worldwide use The Solution
- Planar Inverted F-Antenna (PIFA) with a size of 45mmx14mmx3mm
- Foldable design based on semi-flexible PCB
- Also possible to manufactures as molded device The Results:
- Read range on metal: more than 1 m with a first prototype version

Simulated gain vs. Measured gain simulated gain is slightly lower than measured gain

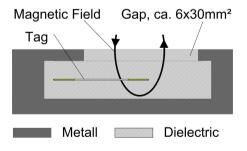
Seite 9

Fraunhofer Institut
Integrierte Schaltungen


Possible Applications

- Incorperating of the tag into a metal part for counterfeits detection
- Wireless data and energy interface to a sensor/actor system inside the metal part

The challenge


- Penetration of the electromagnetic field through into the metal component
- Necessary mechanical reconstruction should not affect the stability of the component

Design Considerations for an inductive coupled solution

$-d/dt \int A B dA = 0$

A: Area of the opening, B: magnetic field

- A nonmetallic path from tag antenna to the surface is necessary, which can be filled with dielectric or permeable material (needs opening in the surface)
- A cavity containing the tag inside the part has to provide sufficient clearance to the surrounding metal
- The magnetic field should enter and leave the object through one opening in the surface

The Design Goal:

- The opening in the surface should be as small as possible to prevent the tag from being taken out
- realize a good coupling factor of the antenna system

Optimized Antenna design

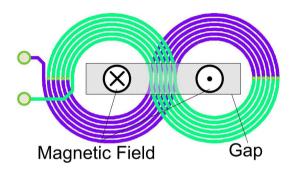
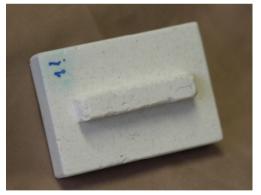


Figure: 8-shaped Tag antenna with a Infineon my-ID Chip

- To increase the efficiency the tag antenna has been optimized leading to an 8-shaped antenna
- With this design the magnetic flux passes the antenna twice in opposite directions
- The design can easily be realised on a two sided printed circuit board
- With this antenna a power transmission of app. 50 mW can be achieved from a 3 Watt Reader


- This projects aims to integrate electronics with sensors and actors into aluminium die cast components in order to realize intelligent mechanical parts
- Data and energy transfer will be realized via inductive coupled 13,56 MHz RFID interface

Challenges:

- Physical conditions of the die cast process:
 - Pressure of about 1000 bar
 - Temperatures of 750°C for aluminium

Results from the current "die cast" Tags

- standard ISO15693 transponder inlays as well as ones with an 8-shaped antenna have been integrated into die cast components so far
- All have been implemented into a special coating for
 - Protection against thermal and mechanical damage
 - Forming a cavity inside metal as a clearance between the tag and the metal surrounding
 - Forming the opening into the metal surface
- Good reading perfomance can be achieved: with a handheld reader the tag can be read out over a distance of a few centimeters

- Requirements from a MRO perspective show a strong demand for tags in metallic environment
- Some examples of improving RFID tag performance in an metallic Environment have been given
 - Industry offers new materials for HF and UHF Band to delimit the metal influence
 - Improvements can already be achieved by considering the metal environment when designing the antenna